metabelian, supersoluble, monomial
Aliases: C32⋊4Q8, C12.3S3, C3⋊2Dic6, C6.12D6, C4.(C3⋊S3), (C3×C12).1C2, C3⋊Dic3.3C2, (C3×C6).11C22, C2.3(C2×C3⋊S3), SmallGroup(72,31)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C32 — C3×C6 — C3⋊Dic3 — C32⋊4Q8 |
Generators and relations for C32⋊4Q8
G = < a,b,c,d | a3=b3=c4=1, d2=c2, ab=ba, ac=ca, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=c-1 >
Character table of C32⋊4Q8
class | 1 | 2 | 3A | 3B | 3C | 3D | 4A | 4B | 4C | 6A | 6B | 6C | 6D | 12A | 12B | 12C | 12D | 12E | 12F | 12G | 12H | |
size | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 18 | 18 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ5 | 2 | 2 | -1 | -1 | 2 | -1 | 2 | 0 | 0 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | 2 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ6 | 2 | 2 | -1 | -1 | -1 | 2 | 2 | 0 | 0 | -1 | 2 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 2 | 2 | orthogonal lifted from S3 |
ρ7 | 2 | 2 | -1 | 2 | -1 | -1 | -2 | 0 | 0 | -1 | -1 | 2 | -1 | 1 | -2 | 1 | 1 | 1 | -2 | 1 | 1 | orthogonal lifted from D6 |
ρ8 | 2 | 2 | -1 | 2 | -1 | -1 | 2 | 0 | 0 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | orthogonal lifted from S3 |
ρ9 | 2 | 2 | 2 | -1 | -1 | -1 | -2 | 0 | 0 | 2 | -1 | -1 | -1 | -2 | 1 | 1 | -2 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ10 | 2 | 2 | -1 | -1 | 2 | -1 | -2 | 0 | 0 | -1 | -1 | -1 | 2 | 1 | 1 | -2 | 1 | -2 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ11 | 2 | 2 | 2 | -1 | -1 | -1 | 2 | 0 | 0 | 2 | -1 | -1 | -1 | 2 | -1 | -1 | 2 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ12 | 2 | 2 | -1 | -1 | -1 | 2 | -2 | 0 | 0 | -1 | 2 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -2 | -2 | orthogonal lifted from D6 |
ρ13 | 2 | -2 | 2 | 2 | 2 | 2 | 0 | 0 | 0 | -2 | -2 | -2 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | symplectic lifted from Q8, Schur index 2 |
ρ14 | 2 | -2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | -√3 | -√3 | -√3 | √3 | √3 | √3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ15 | 2 | -2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 1 | 1 | -2 | 1 | -√3 | 0 | √3 | √3 | -√3 | 0 | √3 | -√3 | symplectic lifted from Dic6, Schur index 2 |
ρ16 | 2 | -2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 1 | 1 | 1 | -2 | -√3 | √3 | 0 | √3 | 0 | -√3 | -√3 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ17 | 2 | -2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | 0 | -√3 | √3 | 0 | -√3 | √3 | -√3 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ18 | 2 | -2 | 2 | -1 | -1 | -1 | 0 | 0 | 0 | -2 | 1 | 1 | 1 | 0 | √3 | -√3 | 0 | √3 | -√3 | √3 | -√3 | symplectic lifted from Dic6, Schur index 2 |
ρ19 | 2 | -2 | -1 | -1 | -1 | 2 | 0 | 0 | 0 | 1 | -2 | 1 | 1 | √3 | √3 | √3 | -√3 | -√3 | -√3 | 0 | 0 | symplectic lifted from Dic6, Schur index 2 |
ρ20 | 2 | -2 | -1 | 2 | -1 | -1 | 0 | 0 | 0 | 1 | 1 | -2 | 1 | √3 | 0 | -√3 | -√3 | √3 | 0 | -√3 | √3 | symplectic lifted from Dic6, Schur index 2 |
ρ21 | 2 | -2 | -1 | -1 | 2 | -1 | 0 | 0 | 0 | 1 | 1 | 1 | -2 | √3 | -√3 | 0 | -√3 | 0 | √3 | √3 | -√3 | symplectic lifted from Dic6, Schur index 2 |
(1 40 7)(2 37 8)(3 38 5)(4 39 6)(9 66 46)(10 67 47)(11 68 48)(12 65 45)(13 51 31)(14 52 32)(15 49 29)(16 50 30)(17 42 62)(18 43 63)(19 44 64)(20 41 61)(21 58 33)(22 59 34)(23 60 35)(24 57 36)(25 56 71)(26 53 72)(27 54 69)(28 55 70)
(1 21 29)(2 22 30)(3 23 31)(4 24 32)(5 35 51)(6 36 52)(7 33 49)(8 34 50)(9 69 43)(10 70 44)(11 71 41)(12 72 42)(13 38 60)(14 39 57)(15 40 58)(16 37 59)(17 45 53)(18 46 54)(19 47 55)(20 48 56)(25 61 68)(26 62 65)(27 63 66)(28 64 67)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)
(1 18 3 20)(2 17 4 19)(5 41 7 43)(6 44 8 42)(9 51 11 49)(10 50 12 52)(13 68 15 66)(14 67 16 65)(21 54 23 56)(22 53 24 55)(25 58 27 60)(26 57 28 59)(29 46 31 48)(30 45 32 47)(33 69 35 71)(34 72 36 70)(37 62 39 64)(38 61 40 63)
G:=sub<Sym(72)| (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,51)(6,36,52)(7,33,49)(8,34,50)(9,69,43)(10,70,44)(11,71,41)(12,72,42)(13,38,60)(14,39,57)(15,40,58)(16,37,59)(17,45,53)(18,46,54)(19,47,55)(20,48,56)(25,61,68)(26,62,65)(27,63,66)(28,64,67), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63)>;
G:=Group( (1,40,7)(2,37,8)(3,38,5)(4,39,6)(9,66,46)(10,67,47)(11,68,48)(12,65,45)(13,51,31)(14,52,32)(15,49,29)(16,50,30)(17,42,62)(18,43,63)(19,44,64)(20,41,61)(21,58,33)(22,59,34)(23,60,35)(24,57,36)(25,56,71)(26,53,72)(27,54,69)(28,55,70), (1,21,29)(2,22,30)(3,23,31)(4,24,32)(5,35,51)(6,36,52)(7,33,49)(8,34,50)(9,69,43)(10,70,44)(11,71,41)(12,72,42)(13,38,60)(14,39,57)(15,40,58)(16,37,59)(17,45,53)(18,46,54)(19,47,55)(20,48,56)(25,61,68)(26,62,65)(27,63,66)(28,64,67), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72), (1,18,3,20)(2,17,4,19)(5,41,7,43)(6,44,8,42)(9,51,11,49)(10,50,12,52)(13,68,15,66)(14,67,16,65)(21,54,23,56)(22,53,24,55)(25,58,27,60)(26,57,28,59)(29,46,31,48)(30,45,32,47)(33,69,35,71)(34,72,36,70)(37,62,39,64)(38,61,40,63) );
G=PermutationGroup([[(1,40,7),(2,37,8),(3,38,5),(4,39,6),(9,66,46),(10,67,47),(11,68,48),(12,65,45),(13,51,31),(14,52,32),(15,49,29),(16,50,30),(17,42,62),(18,43,63),(19,44,64),(20,41,61),(21,58,33),(22,59,34),(23,60,35),(24,57,36),(25,56,71),(26,53,72),(27,54,69),(28,55,70)], [(1,21,29),(2,22,30),(3,23,31),(4,24,32),(5,35,51),(6,36,52),(7,33,49),(8,34,50),(9,69,43),(10,70,44),(11,71,41),(12,72,42),(13,38,60),(14,39,57),(15,40,58),(16,37,59),(17,45,53),(18,46,54),(19,47,55),(20,48,56),(25,61,68),(26,62,65),(27,63,66),(28,64,67)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72)], [(1,18,3,20),(2,17,4,19),(5,41,7,43),(6,44,8,42),(9,51,11,49),(10,50,12,52),(13,68,15,66),(14,67,16,65),(21,54,23,56),(22,53,24,55),(25,58,27,60),(26,57,28,59),(29,46,31,48),(30,45,32,47),(33,69,35,71),(34,72,36,70),(37,62,39,64),(38,61,40,63)]])
C32⋊4Q8 is a maximal subgroup of
D12.S3 C32⋊3Q16 C24⋊2S3 C32⋊5Q16 C32⋊9SD16 C32⋊7Q16 S3×Dic6 D12⋊5S3 C12.59D6 C12.D6 Q8×C3⋊S3 He3⋊3Q8 C12.D9 C33⋊4Q8 C33⋊8Q8 A4⋊Dic6 C12.6S4 C15⋊Dic6 C12.D15
C32⋊4Q8 is a maximal quotient of
C6.Dic6 C12⋊Dic3 C12.D9 He3⋊4Q8 C33⋊4Q8 C33⋊8Q8 A4⋊Dic6 C15⋊Dic6 C12.D15
Matrix representation of C32⋊4Q8 ►in GL4(𝔽13) generated by
1 | 0 | 0 | 0 |
0 | 1 | 0 | 0 |
0 | 0 | 9 | 0 |
0 | 0 | 5 | 3 |
0 | 1 | 0 | 0 |
12 | 12 | 0 | 0 |
0 | 0 | 3 | 0 |
0 | 0 | 8 | 9 |
3 | 6 | 0 | 0 |
7 | 10 | 0 | 0 |
0 | 0 | 12 | 0 |
0 | 0 | 0 | 12 |
5 | 0 | 0 | 0 |
8 | 8 | 0 | 0 |
0 | 0 | 2 | 8 |
0 | 0 | 11 | 11 |
G:=sub<GL(4,GF(13))| [1,0,0,0,0,1,0,0,0,0,9,5,0,0,0,3],[0,12,0,0,1,12,0,0,0,0,3,8,0,0,0,9],[3,7,0,0,6,10,0,0,0,0,12,0,0,0,0,12],[5,8,0,0,0,8,0,0,0,0,2,11,0,0,8,11] >;
C32⋊4Q8 in GAP, Magma, Sage, TeX
C_3^2\rtimes_4Q_8
% in TeX
G:=Group("C3^2:4Q8");
// GroupNames label
G:=SmallGroup(72,31);
// by ID
G=gap.SmallGroup(72,31);
# by ID
G:=PCGroup([5,-2,-2,-2,-3,-3,20,61,26,323,1204]);
// Polycyclic
G:=Group<a,b,c,d|a^3=b^3=c^4=1,d^2=c^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^-1>;
// generators/relations
Export
Subgroup lattice of C32⋊4Q8 in TeX
Character table of C32⋊4Q8 in TeX